The comparison study of Chemical Composition and Nutritional Value in Common carp Cyprinus carpio L. from Shatt Al-Arab and earthen ponds

Authors

Keywords:

Cyprinus carpio L., proximate composition, Amino acid, fatty acid.

Abstract

The present investigation aimed to compare the chemical composition, amino acid profile and fatty acid composition in common carp (Cyprinus carpio L.) collected from different sources from Basrah Governorate, southern Iraq. Wild specimens were obtained from the natural waters of the Shatt al-Arab River at Karmat Ali, while other samples were collected from the earthen ponds of the Fish Farming Unit, College of Agriculture, University of Basrah, as well as from floating cages in Al-Nashwa, Qurna District. Sampling was carried out during November 2024. Amino acids were analyzed using ion-exchange chromatography followed by post-column ninhydrin derivatization, employing an automatic analyzer (Shimadzu Spd–6 Av UV–Visible detector) with High-Performance Liquid Chromatography (HPLC). Fatty acid composition, including saturated and unsaturated fractions, was determined using Gas Chromatography–Mass Spectrometry (GC–MS). Results revealed significant variations (p<0.05) in the chemical composition among fish from the different resources. Wild fish from the Shatt al-Arab exhibited the highest protein content (19.37%) and the lowest lipid content (2.97%). A total of 18 amino acids were identified, comprising both essential and non-essential types, with the highest concentration of essential amino acids (24.35 μg/100 μg protein) recorded in fish from floating cages. Fatty acid analysis demonstrated notable differences, with the lowest saturated fatty acid (SFA) content (28.24 μmol/100 ml oil), the highest monounsaturated (MUFA) and polyunsaturated fatty acid (PUFA) contents (39.87 and 39.83 μmol/100 ml oil, respectively) were observed in Shatt al-Arab specimens in compared with cultured fish.

Metrics

Metrics Loading ...

References

Abdulkadir, M.; Abubakar, G.I. and Mohammed. A. (2010). Production and characterization of oil from fishes. ARPN J. Eng. Appl. Sci., 5 (7): 1 – 5.

Abraha, B.; Admassu, H.; Mahmud, A.; Tsighe, N.; Shui, X. W. and Fang, Y. (2018). Effect of processing methods on nutritional and physicochemical composition of fish: A review. J. Food Process. Technol., 6 (4): 376 – 382.

Afkhami, H.; Mokhlesi, A.; Darvishbastami, K. and Khoshnod, R. (2011). Survey of some chemical compositions and fatty acids in cultured Common Carp (Cyprinus carpio) and Grass Carp (Ctenopharyngodon idella), Noshahr, Iran. World J. Fish & Mar. Sci., 3 (6):533 – 538.

Ahmed, A.R. (2022). Evaluation of the Nutritional Quality of Farmed Common Carp (Cyprinus carpio L.) Based on Fatty and Amino Acids Profile. Acta. Aquat. Turc., 18, (2): 159 – 167. DOI: 10.22392/actaquatr.971039.

Ahmed, I.; Jan, K.; Fatma, S. and Dawood, M.A. (2022). Muscle proximate composition of various food fish species and their nutritional significance: A review. J. Anim. Physiol. Anim. Nutr., 106, 690 – 719.

Al–Sabagh, E.S.H.; Taha, N.M.; Saleh, E.A.; El-Far, A.H. and Sadek, K.M. (2016). Effect of freezing and frozen Storage on amino acid Profile and fatty acid pattern in lmported and local meat. Alex. J. Vet. Sci., 49(1): 113 – 121.

Alahmad, K.; Xia, W.; Jiang, Q. and Xu, Y. (2021). Influence of Drying Techniques on the Physicochemical, Nutritional, and Morphological Properties of Bighead Carp (Hypophthalmichthys nobilis) Fillets. Foods, 10, 2837.

AL-Hamadany, Q.H.; Farnar, K.W.; Jabir, A.A. and Al-Anber, L.J. (2022). Nutritional value of some commercial marine fishes. Iraqi J. Aquacult., 19(1): 91 – 102.

AL-Humairi, K.O.M.; Al-Agidi, H.G. and Al-Haider, S.M (2019). Evaluation of Amino Acid Profile for Freshwater Fishes Yellow Barbell (Carasobarbus luteus) and Common Carp (Cyprinus Carpio) of Euphrates River, Iraq. Indian J. Ecol., 46(8): 229 – 232.

AL-Humairi, K.O.M.; AL-Noor, S.S. and Al-Tameemi, R.A. (2021). Comparative Study of Amino and Fatty Acids Synthesis in Two Different Groups of Common Carp (Cyprinus carpio L.) Cultured in Floated Cages. Indian J. Ecol., 48(2): 513 – 518.

Al-Jumaiee, S.A.J.; Aufy, L.A.; Al- Hussainy, K.S.J. and Bannai, M. (2025). Effects of dietary diversity on fatty acid and omega species composition of diverse fish species in the marshes of southern Iraq. Arab J. Sci. Res., 9(10): 51–72.

Doi: 10.21608/ajsr.2025.422204.

AOAC. (2000). Official Methods of Analysis, 17th ed. Washington, DC: Association of Official Analytical Chemists.

Begum, M.; Akter, T. and Minar, M.H. (2012). Analysis of the proximate composition of domesticated stock of pangas (Pangasianodon hypophthalmus) in laboratory condition. J. Environ. Sci. Nat. Resour., 5(1): 69–74.

Calanche, J.; Tomas, A.; Martinez, S.; Jover, M.; Alonso, V.; Roncalés, P. and Beltrán, J. A. (2019). Relation of quality andsensory perception with changes in free amino acids of thawedseabream (Sparus aurata). Food Res. Int.,(119): 126–134.

Ćirković, M.; Ljubojević, D.; Đorđević, V.; Novakov, N. and Petronijević, R. (2012). Chemical composition of body including fatty acids of four cyprinids fish species cultured at the same conditions. Arch. Zootechnica., 15(2): 37 – 50.

Dvoretsky, A.G.; Bichkaeva, F.A.; Vlasova, O.S.; Andronov, S.V. and Dvoretsky, V.G. (2023). Fatty Acid Composition of Northern Pike from an Arctic River. (Northeastern Siberia, Russia). Foods, 12, 764.

FAO, (2024). The State of World Fisheries and Aquaculture 2024 – Blue Transformation in action. Rome. https://doi.org/10.4060/cd0683en

Fernandes, C.E.; Vasconcelos, M.A.S.; Ribeiro, M.A.; Sarubbo, L.A.; Andrade, S.A.C. and Melo Filho, A.B. (2014). Nutritional and lipid profiles in marine fish species from Brazil. Food Chem., (160): 67 – 71.

Ghaly, A.E.; Ramakrishnan, V.V.; Brooks, M.S.; Budge, S.M. and Dave, D. (2013). Fish processing wastes as a potential source of proteins, amino acids and oils: A Critical Review. J. Microb. Biochem. Technol., 5(4): 107 – 129.

Hantoush, A.A.; Al-Hamadany, Q.H.; Al-Hassoon, A.S. and Al-Ibadi, H.J. (2014). Nutritional value of important commercial fish from Iraqi waters. Int. J. Mar. Sci., 5(11): 1 – 5.

He, Z.; Wang, J.; Wei, Y.; Yan, X.; Li, Y.; Xie, D. and Nie, G. (2025). Optimizing Muscle Quality in Common Carp (Cyprinus carpio L.): Impacts of Body Size on Nutrient Composition, Texture, and Volatile Profile. Foods, 14, (16): 1–19. 2794;

https://doi.org/10.3390/foods14162794.

Herc, P.; Čuboň, J.; Čech, M.; Haščík, P.; Kročko, M. and Hanuska, A. (2024). Fatty acid profile of common carp (Cyprinus carpio) after addition of astaxanthin to the feed mixture. J. Microbiol. Biotech. Food Sci., 14, (2): e10581.

DOI: https://doi.org/10.55251/jmbfs.10581

Hixson, S. M. (2014). Fish nutrition and current issues in aquaculture: the balance in providing safe and nutritious seafood, in an environmentally sustainable mannerJ. Aquac. Res. Dev., 5 (3). DOI: 10.4172/2155-9546.1000234.

Hoseini, M.; Baboli, M.J. and Sary, A.A. (2013). Chemical composition and fatty acids profile of farmed Big head carp (Hypophthalmichthys nobilis) and Grass carp (Ctenopharyngodon idella) filet. AACL Bioflux, 6(3): 202 – 210.

Hu, X.F. and Chan, H.M. (2020). Seafood consumption and its contribution to nutrients intake among Canadians in 2004 and 2015. Nutrients, 13(1): 77 – 91.

Ibrahim, A.B. and AL-Khshali, M.SH. (2019). Study of the chemical composition of common carp fish reared in different culture systems. Plant Arch., 19(2): 1816–1818.

Innes, J. K. and Calder, P.C. (2020). Marine omega-3 (N-3) fatty acids for cardiovascular health: An update for 2020. Int. J. Mol. Sci., 21,(4):1362.

doi: 10.3390/ijms21041362.

Jiang, X.; Song, Z.; Li, C.; Hu, X.; Ge, Y.; Cheng, L.; Shi, X. and Jia, Z. (2024). Effects of Dietary Lipid Levels on the Growth, Muscle Fatty Acid and Amino Acid Composition, Antioxidant Capacity, and Lipid Deposition in Mirror Carp (Cyprinus carpio). Animals, 14, 2583. https://doi.org/10.3390/ani14172583.

Kaliniak-Dziura, A.; Skałecki, P.; Florek, M.; Kedzierska-Matysek, M. and Sobczak, P. (2024). Chemical Composition and Elements Concentration of Fillet, Spine and Bones of Common Carp (Cyprinus carpio) in Relation to Nutrient Requirements for Minerals. Animals, 14, 1311. https://doi.org/10.3390/ani14091311.

Li, D.; Prinyawiwatkul, W.; Tan, Y.; Luo, Y. and Hong, H. (2021). Asian carp: A threat to American lakes, a feast on Chinese tables. Compr. Rev. Food Sci. Food Saf., 20, 1–23.

Maghfira, L.L.; Stündl, L.; Fehér, M. and Asmediana, A. (2023). Review on the fatty acid profile and free fatty acid of common carp (Cyprinus carpio). Acta. Agrar. Debreceniensis, 2023-2. DOI: 10.34101/ACTAAGRAR/2/13290.

Makarova, G.P.; Lykasova, I.A.; Mukhamedyarova, Z.P. and Mizhevikina, A.S. (2019). The influence of nabicat on the chemical composition of carp meat. IOP Conf. Ser. Earth Environ. Sci. 2019, 341, 012159.

Marta, M.; Holgado, F.; Sevenich, R.; Briand, J.C.; Márquez Ruiz, G. and Morales, F.J. (2015). Fatty acids profile in canned tuna and sardine after retort sterilization and high pressure thermal sterilization treatment. J. Food Nutr. Res., 54(2): 171–178.

Newton, I. S. (1996). Food enrichment with Long-Chain n-3 Poly Unsaturated Fatty Acids (LC PUFA). INFORM, 7(2):169–177.

Nur, I.T.; Ghosh, B.K. and Acharjee, M. (2020). Comparative microbiological analysis of raw fishes and sun-dried fishes collected from the Kawran bazaar in Dhaka city. Bangladesh J. Food Res.; 4(3): 846–851.

Obeed, A.A. and Al-Noor, J.M. (2025). Evaluation of Physicochemical Properties of Some Imported Frozen Fish Species from Basrah Markets, Iraq. Egypt. J. Aquat. Biol. Fish., 19(1): 797–818.

Okwuosa, O.B.; Amadi-Ibiam, C.O. and Omovwohwovie Emmanuel, E. (2021). A Review on fish growth and physiological properties of fish muscle tissue development. Iconic Res. Eng. J., 5(6): 20–29.

Pinte, N.; Coubris, C.; Jones, E. and Mallefet, J. (2021). Red and white muscle proportions and enzyme activities in mesopelagic sharks. Comparative Biochemistry and Physiology Part B: Biochem. Mol. Biol., 256(431): 526–539.

Pyz-Lukasik, R. and Kowalczyk-Pecka, D. (2017). Fatty acid profile of fat of Grass Carp, Bighead Carp, Siberian Sturgeon, and Wels Catfish. J. Food Qual., 2017, 5718125.

https://doi.org/10.1155/2017/5718125

Rahman, M.M.; Hajar, S. and Yunus, K.B. (2020). Comparati analysis of chemical composition of some commercially important fishes with an emphasis on various Malaysian diets. Open Chem., 18(1): 1323–1333.

Runge, K. K.; Shaw, B. R.; Witzling, L.; Hartleb, C.; Yang, S. and Peroff, D.M. (2021). Social license and consumer perceptions of farm-raised fish. Aquaculture, 530(45): 735–920.

Suprayudi, M.A.; Amrillah, M.F.Q.B.; Fauzi, I.A. and Yusuf, D.H. (2023). Growth performance of common carp, Cyprinus carpio fed with different commercial feed in cirata reservoir cage culture system. IOP Conf. Series: Earth Environ. Sci., 1033, 012009. doi:10.1088/1755-1315/1033/1/012009.

Tambalis, K. and Arnaoutis, G. (2022). The importance of branchedchain amino acids and nitrate in sports performance and health. J. Phys. Act. Res., 7(3): 37–46.

Tenyang, N.; Womeni, H.M.; Linder, M.; Tiencheu, B.; Villeneuve, P. and Mbiapo, F.T. (2016). The chemical composition, fatty acid, amino acid profiles and mineral content of six fish species commercialized on the Wouri river coast in Cameroon. See discussions, stats, and author profiles for this publication at:

https://www.researchgate.net/publication/269927734.

Tocher, D.R. (2015). Omega-3 long-chain polyunsaturated fatty acids and aquaculture in perspective. Aquaculture, 449, 94–107.

Vidotti, R.M.; Viegas, E.M.M. and Carneiro, D.J. (2003). Amino acid composition of processed fish silage using different raw materials. Anim. Feed Sci. Technol., (105): 199–204.

Wang, L.; Wang, L.; Liu, C.; Feng, D.; Huang, J.; Jin, Z.; Ma, F.; Xu, J.; Xu, Y. and Zhang, M.(2025). Effects of water flow treatment on muscle quality, nutrient composition and volatile compounds in common carp (Cyprinus carpio). Food Chem., 26, 102257.

Xie, R.T.; Amenyogbe, E.; Chen, G. and Huang, J.S. (2021). Effects of feed fat level on growth performance, body composition and serum biochemical indices of hybrid grouper (Epinephelus fuscoguttatus × Epinephelus polyphekadion). Aquaculture, 530, 735813.

Yeganeh, S.; Shabanpour, B.; Hosseini, H.; Imanpour, M.R. and Shabani, A. (2012). Comparison of farmed and wild common carp (Cyprinus carpio): Seasonal variations in chemical composition and fatty acid profile. Czech J. Food Sci., 30(6): 503–511. https://doi.org/10.17221/455/2011-cjfs

Ranges and averages of total lengths and weights of common carp (Cyprinus carpio) under study

Downloads

Published

18-01-2026

How to Cite

Al-Noor, J., & Najim, S. (2026). The comparison study of Chemical Composition and Nutritional Value in Common carp Cyprinus carpio L. from Shatt Al-Arab and earthen ponds . Iraqi Journal of Aquaculture, 23(1), 43–59. Retrieved from https://ijaqua.uobasrah.edu.iq/index.php/jaqua/article/view/771