The influence of organic pollution resulting from the connection of some polluted small rivers to the Shatt al-Arab on the fish assemblage

Authors

  • Abdullah et al.

Keywords:

Organic pollutants, Fish assemblage, Al-Ribat River, Al-Ashar River, Al-Saraji River.

Abstract

Due to the lack of studies dealing with the influence of organic pollutants on fish assemblages in the Shatt Al-Arab River, the present study was done to explain the impact of these pollutants on the composition, abundance, and diversity of fish in the river near the points of discharge of these rivers in the Shatt Al-Arab River. The samples were collected monthly from January to December 2024. Some ecological parameters were measured in the study region As water temperature, salinity, hydrogen ion concentration, dissolved oxygen, biological oxygen demand, total nitrate, and total phosphate. Out of the total of 26 fish species that were caught, five were native, eight were exotic, and 13 were marine fish species belonging to 20 genera, 15 families, and nine orders, all of them affiliated with the bony fish Osteichthyes class. Four species recorded the highest values of numerical relative abundance and formed 68.64% of the overall number of species. The present study concluded that the region has high organic pollutants and total nitrate and phosphate concentrations, with a clear impact on the composition, abundance, and diversity of fish assemblages near these rivers, particularly those meeting the Shatt Al-Arab River.

Metrics

Metrics Loading ...

References

Abdullah, A.H.J.; Qasim; A.M.; and Adullah, S.A. The influence of some ecological factors on fish diversity and abundance in Al- Huwyzah marsh / South of Iraq. Revis Bionat. 2023;8 (2) 53. http://dx.doi.org/10.21931/RB/2023.08.02.53

Abdullah, A. H. J and Aldoghachi, M. A. (2024). The effect of the salinity gradient on the diversity of fish assemblage in the Shatt Al-Arab River. Mesopo. Environ. J., 8 (1):1-15. DOI: http://dx.doi.org/10.31759/mej.2024.8.1.0015

Abdullah, A. H. J., and Aldoghachi, M. A. (2024). The Impact of Household Pollutants and Fish Assemblages on the Environment of Some Internal Streams Fed by the Euphrates River, North of Basrah Province. Mesopotam. J. Mar. Sci., 39(1):43-58.

Affandi, F.A., and Ishak, M.Y. (2019). Impacts of suspended sediment and metal pollution from mining activities on riverine fish population—a review. Environm. Sci., and Pollut. Research, 26, 16939-16951.

Agarwal, D.; Shanmugam, S. A.; Kathirvelpandian, A.; Eswaran, S.; Rather, M. A., and Rakkannan, G. (2024). Unraveling the impact of climate change on fish physiology: a focus on temperature and salinity dynamics. J. Appl. Ichthyol., 2024(1), 5782274.

Akinnawo, S. O. (2023). Eutrophication: Causes, consequences, physical, chemical and biological techniques for mitigation strategies. Environm. Challen., 12, 100733

Aldoghachi, M. A. J., and Abdullah, A. H. J. (2021). Petroleum Hydrocarbons, heavy metals, physico-chemical parameters and impacting factors on diversity and abundance fish species in the Garmat Ali River. Ecology, Environm. and Conservat., 27, S66-S75.

Alfonso, S.; Gesto, M., and Sadoul, B. (2021). Temperature increase and its effects on fish stress physiology in the context of global warming. J. Fish Biol., 98(6), 1496-1508.‏

Bi, P.; Huang, G.; Liu, C., and Li, L. (2022). Geochemical factors controlling natural background levels of phosphate in various groundwater units in a large-scale urbanized area. J. Hydrology, 608, 127594.‏

Bulbul Ali, A., and Mishra, A. (2022). Effects of dissolved oxygen concentration on freshwater fish: A review. Internation. J. Fisher. and Aquatic Stud., 10(4), 113-127.‏

Cao, M.; Hu, A.; Gad, M.; Adyari, B.; Qin, D.; Zhang, L., ... and Yu, C. P. (2022). Domestic wastewater causes nitrate pollution in an agricultural watershed, China. Sci., of the Total Environm., 823, 153680.‏

Chakraborty, S. K., and Chakraborty, S. K. (2021). River pollution and perturbation: Perspectives and processes. Riverine Ecology Volume 2: Biodiversity Conservation, Conflicts and Resolution, 443-530.‏

Cooke, S. J., Bergman, J. N., Twardek, W. M., Piczak, M. L., Casselberry, G. A., Lutek, K., and Lennox, R. J. (2022). The movement ecology of fishes. J Fish Biol., 101(4): 756-779.‏

Dugan, H. A. (2024). Salinity and ionic composition of inland waters. In Wetzel's Limnology (pp. 275-299). Academic Press

Fernando, A. M. E., and Súarez, Y. R. (2021). Resource use by omnivorous fish: Effects of biotic and abiotic factors on key ecological aspects of individuals. Ecol. of Freshwat. Fish, 30(2), 222-233.‏

Fremlin, K. M.; Elliott, J. E.; Green, D. J.; Drouillard, K. G.; Harner, T.; Eng, A., and Gobas, F.A. (2020). Trophic magnification of legacy persistent organic pollutants in an urban terrestrial. Sci,, The Total Environm., 714(11):136746

Fricke, R.; Eschmeyer, W. N. and Van der Laan, R. (eds) 2023. Schemers catalog of fishes’ genera species references. (http://researcharchive.calacademy.org/research/ichthyology/catalog/fishcatmain.asp). Electronic version accessed 2023.

Froese, R. and D. Pauly. Editors. 2022. FishBase. World Wide Web electronic publication.www.fishbase.org, version (02/2022). food web. Science of the Total Environment, 714, 136746.‏

Gebrekiros, S. T. (2016). Factors affecting stream fish community composition and habitat suitability. J. Aquacult. and Marine Biol., 4(2), 00076.‏

Gonzalez, R.; Durante, C.; Arcagni, M.; Juncos, R.; Seco Pon, J.; Crespo, E., and Narvarte, M. (2021). Effects of pollution in aquatic food chains. Anthrop. Pollut. of aquat. Ecosyst., 61-89. DOI 10.1007/978-3-030-75602-4_4

Huang, A.;Huang, L.; Wu, Z.; Mo, Y.; Qi, Wu, N., and Chen, Z. 2019. Correlation of fish assemblages with habitat and environmental variables in a headwater stream section of Lijiang River, China. Sustainability 11(4):1-14. https://www.mdpi.com/2071-1050/11/4/1135

Hussain, N. A.; Younis, K. H., and Yousif, U. H. (1995). The influence of low salinity, temperature and domestic sewage on the distribution of fish assemblage in Shatt Al-Arab River, Iraq. Marina Mespotam., 10, 257-274.

Krause, K. P.; Wu, C. L.; Chu, M. L., and Knouft, J. H. (2019). Fish assemblage–environment relationships suggest differential trophic responses to heavy metal contamination. Freshwat. Biol., 64(4), 632-642.‏

Lan, J., Liu, P., Hu, X., and Zhu, S. (2024). Harmful algal blooms in eutrophic marine environments: causes, monitoring, and treatment. Water, 16(17), 2525.

Lateef, Z. Q.; Al-Madhhachi, A. S. T., and Sachit, D. E. (2020). Evaluation of water quality parameters in Shatt Al-Arab, Southern Iraq, using spatial analysis. Hydrology, 7(4), 79.‏

Lee, S. J.; Mamun, M., Atique, U., and An, K. G. (2023). Fish tissue contamination with organic pollutants and heavy metals: link between land use and ecological health. Water, 15(10), 1845.‏

Lv, Z.; Ran, X.; Liu, J., Feng, Y.; Zhong, X., and Jiao, N. (2024). Effectiveness of chemical oxygen demand as an indicator of organic pollution in aquatic environments. Ocean-Land-Atmosphere Resear., 3, 0050.‏

Malik, D. S.; Sharma, A. K.; Sharma, A. K.; Thakur, R., and Sharma, M. (2020). A review on impact of water pollution on freshwater fish species and their aquatic environment. Advances in environmental pollution management: wastewater impac. and treatment technolog., 1, 10-28.

Mawat, M. J., and Hamdan, A. N. A. (2024). 2D Hydrodynamic and Eutrophication Modeling in the Shatt Al-Arab River, Basrah, Iraq. Environmen. & Earth Sci., Research J., 11(1).

Mishra, R. K. (2023). The effect of eutrophication on drinking water. British J. Multidisciplinary and Advan. Stud., 4(1), 7-20.

Murphy, J. and Riely, J. P. (1962). A modified single solution method for the determination of phosphate in natural water. Anal. Chem. Acta., 27:31-36. https://doi.org/10.1016/S0003-2670(00)88444-5.

Natochin, Y. V. (2019). Principles of evolution of the excretory organs and the system of homeostasis. J. Evolutionary Biochemistry and Physiol., 55: 398-410

Nyitrai D.; Martinho F.; Dolbeth M.; Baptista J., and Pardal M. 2012. Trends in estuarine fish assemblages facing different environmental conditions: combining diversity with functional attributes. Aquat. Ecol., 46: 201-214. DOI: 10.1007/s10452-012-9392-1

Olson, K. R., and Speidel, D. R. (2024). Tigris, Euphrates, and Shatt Al-Arab River System: Historic and modern attempts to manage and restore Iraq’s lifeline. Open J. Soil Sci., 14(1): 28-63.

O’Mara, K.; Miskiewicz, A., and Wong, M. Y. (2016). Estuarine characteristics, water quality and heavy metal contamination as determinants of fish species composition in intermittently open estuaries. Mar. and Freshwa. Resear., 68(5): 941-953.‏

Oros, A. (2025). Bioaccumulation and trophic transfer of heavy metals in marine fish: Ecological and ecosystem-level impacts. J. Xenobiotics, 15(2), 59. https://doi.org/10.3390/jox15020059

Piria, M.; Simonovic, P.; Zanella, D.; Caleta, M.; Sprem, N.; Paunovic, M.; ... and Treer, T. (2019). Long-term analysis of fish assemblage structure in the middle section of the Sava River–The impact of pollution, flood protection and dam construction. Sci., of the total environm., 651: 143-153.

Prabu, D. L.; Kalidas, C.; Ranjith, L.; Ebeneezar, S.; Kavitha, M.; Zacharia, P. U.; ... and Muniswaran, B.R. (2023). Effect of water temperature on growth, blood biochemistry, digestive, metabolic enzymology, and antioxidant defenses of Trachinotus blochii juveniles. Aquacult. Internation., 31(3): 1499-1522.‏

‏Reeve, C.; Rowsey, L. E., and Speers-Roesch, B. (2022). Inactivity and the passive slowing effect of cold on resting metabolism as the primary drivers of energy savings in overwintering fishes. J. experiment. Boil., 225(8), jeb 243407. ‏

Tiwari, A. K., and Pal, D. B. (2022). Nutrients contamination and eutrophication in the river ecosystem. In Ecological significance of river ecosystems (pp. 203-216). Elsevier.

Tyler A.V. 1971. Periodic and resident components in communities of Atlantic Fishes. J. the Fisheries Research Board of Canada, 28(7): 935-946.

Volkoff, H., and Ronnestad, I. (2020). Effects of temperature on feeding and digestive processes in fish. Temperature, 7(4): 307-320. ‏

Walag A.M.P., and Canencia M.O.P. 2016. Physico-chemical parameters and microbenthic nvertebrates of the intertidal zone of Gusa, Cagayan de Oro City, Philippines. Aesbioflux Advances in Environm. Sci., 8: 71-82.

Waqas, W.; Yuan, Y.; Ali, S.; Zhang, M.; Shafiq, M.; Ali, W.; and Ma, H. (2024). Toxic effects of heavy metals on crustaceans and associated health risks in humans: a review. Environm. Chemistry Lett., 22(3): 1391-1411.‏

Welch‚ P. S. 1964. Limnology. 2nd. ed Mc Graw. Hill Book Co., New York. pp:538.

Wurtsbaugh, W. A.; Paerl, H. W., and Dodds, W. K. (2019). Nutrients, eutrophication and harmful algal blooms along the freshwater to marine continuum. Wiley Interdisciplinary Reviews: Water, 6(5), e1373.

Ye, J. Y.; Tian, W. H.; Zhou, M.; Zhu, Q. Y.; Du, W. X., and Jin, C. W. (2021). Improved plant nitrate status involves in flowering induction by extended photoperiod. Frontiers in plant sci., 12, 629857.‏

Yongo, E.; Cishahayo, L.; Mutethya, E.; Alkamoi, B. M. A.; Costa, K., and Bosco, N. J. (2021). A review of the populations of tilapiine species in lakes Victoria and Naivasha, East Africa. African J. Aquat. Sci., 46(3); 293-303.

Zhang, S.; Zhan, A.; Zhao, J., and Yao, M. (2024). Metropolitan pressures: Significant biodiversity declines and strong filtering of functional traits in fish assemblages. Sci., of The Total Environ., 944, 173885.

Monthly changes in hydrogen ion, dissolved oxygen, and biological oxygen demand in the present study region

Downloads

Published

11-09-2025

How to Cite

Abdullah, A. H. (2025). The influence of organic pollution resulting from the connection of some polluted small rivers to the Shatt al-Arab on the fish assemblage. Iraqi Journal of Aquaculture, 22(2), 259–275. Retrieved from https://ijaqua.uobasrah.edu.iq/index.php/jaqua/article/view/721