Effect of salt stress on some growth parameters of gray mangrove seedlings Avicennia marina (Forsk.) Vierh.
Keywords:
Gray mangrove, Avicennia marina, bioreactor, vegetative traits, biomass, salt tolerance, chlorophyll content.Abstract
The experiment was conducted in one of the orchards of Abu Al-Khaseeb district of Basrah Governorate Iraq for a period of 180 days from Nov. 2021 to May 2022, using a tidal bioreactor as a model for environmental conditions on the marine coasts. In the experiment, two-month-old (2m) and 24-month-old (24m) seedlings were used at planting and five salinity levels (5, 15, 25, 35, and 50 ppt) with 6 replicates. Measurements of growth indicators, which recorded the highest values in plants treated with 25 ppt saline concentration, for (24m) seedlings 6 months after the planting, as they reached 76.3 cm, 116.7 leaves.plant-1, 2280 cm2.plant-1, 17.33 branches.plant-1 and 62.4 µg.cm-2 for the indicators of the total height of the plant, the total number of leaves in the plant, the total leaf area, the number of lateral branches, and the total leaf content of chlorophyll, respectively. Recorded the highest value of the total fresh weight in treated plants 50 ppt was 124.81 g, while no large differences were observed in the percentage for the dry matter of the plants and for all the saline treatments, while the plants of the 35 ppt treatment achieved the highest survival rates of 100% for seedlings of (2m) and (24m) after six months of cultivation. The results were compared according to the Least Significant Difference (L.S.D.) test at a probability level of 0.05.
Metrics
References
Alrubaye, A.; Al-Zewar, J.M.; Al-Aradi H.J. and Qasim, A.M. (2023). Possibility of cultivation gray mangroves Avaccinnia marina (Forsk.) Vierh. in the Iraqi coasts. Iraqi j. Aqua., 20(1), 1-18. https://doi.org/10.58629/ijaq.v20i1.453.
Aziz, I. and Khan, M.A. (2001). Effect of seawater on the growth, ion content and water potential of Rhizophora mucronata Lam. J. Plant Res., 114(3): 369. https://doi.org/10.1007/PL00013998.
Ball, M.C., and Farquhar, G.D. (1984). Photosynthetic and stomatal responses of two mangrove species, Aegiceras corniculatum and Avicennia marina, to long term salinity and humidity conditions. Plant Physiol., 74(1): 1-6. https://doi.org/10.1104/pp.74.1.1.
Chen, C.I.; Lin, K.H.; Huang, M.Y.; Wong, S.L.; Liao, T.S.; Chen, M.N.; ... and Wang, C.W. (2022). Photosynthesis in response to different salinities and immersions of two native Rhizophoraceae mangroves. Cells, 11(19): 3054. https://doi.org/10.3390/cells11193054.
David, M.O. and Nilsen, E.T. (2000). The Physiology of Plant Under Stress. John Wiley and Sons , Inc.
Davies, W.J. and Zhang, J. (1991). Root signals and the regulation of growth and development of plants in drying soil. Annu. Rev. Plant Boil., 42(1): 55-76. https://doi.org/10.1146/annurev.arplant.42.1.55.
Duarte, B.; Sleimi, N. and Cacador, I. (2014). Biophysical and biochemical constraints imposed by salt stress: learning from halophytes. Front. Plant Sci., 5: 746. https://doi.org/10.3389/fpls.2014.00746.
Eyland, D.; van Wesemael, J.; Lawson, T. and Carpentier, S. (2021). The impact of slow stomatal kinetics on photosynthesis and water use efficiency under fluctuating light. Plant Physiol., 186(2): 998-1012. https://doi.org/10.1093/plphys/kiab114.
Fageria, N.K.; Stone, L.F. and Santos, A.B.D. (2012). Breeding for salinity tolerance. In Plant Breeding for Abiotic Stress Tolerance (pp. 103-122). Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-30553-5_7.
Farquhar, G.D. and Sharkey, T.D. (1982). Stomatal conductance and photosynthesis. Annu. Rev. Plant Physiol., 33(1): 317-345.
Flowers, T.J. and Colmer, T.D. (2015). Plant salt tolerance: adaptations in halophytes. Ann. Bot., 115(3): 327-331. https://doi.org/10.1093/aob/mcu267.
https://en.wikipedia.org/wiki/Avicennia.
Jayatissa, L.P.; Wickramasinghe, W.A.A.D.L.; Dahdouh-Guebas, F. and Huxham, M. (2008). Interspecific variations in responses of mangrove seedlings to two contrasting salinities. Int. Rev. Hydrobiol., 93(6): 700-710. https://doi.org/10.1002/iroh.200711017.
Kawakami, J.; Iwama, K. and Jitsuyama, Y. (2006). Soil water stress and the growth and yield of potato plants grown from microtubers and conventional seed tubers. Field Crops Res., 95(1): 89-96. https://doi.org/10.1016/j.fcr.2005.02.004.
Kodikara, K.A.S.; Jayatissa, L.P.; Huxham, M.; Dahdouh-Guebas, F. and Koedam, N. (2017). The effects of salinity on growth and survival of mangrove seedlings changes with age. Acta Bot. Bras., 32: 37-46. https://doi.org/10.1590/0102-33062017abb0100.
Krishnamurthy, P.; Jyothi-Prakash, P.A.; Qin, L.; He, J.; Lin, Q.; Loh, C.S. and Kumar, P.P. (2014). Role of root hydrophobic barriers in salt exclusion of a mangrove plant Avicennia officinalis. Plant Cell Environ., 37(7): 1656-1671. https://doi.org/10.1111/pce.12272.
Martin, K.C.; Bruhn, D.A.N.; Lovelock, C.E.; Feller, I.C.; Evans, J.R. and Ball, M.C. (2010). Nitrogen fertilization enhances water-use efficiency in a saline environment. Plant, Cell Environ., 33(3): 344-357. https://doi.org/10.1111/j.1365-3040.2009.02072.x.
Mensah, J.K.; Akomeah, P.A.; Ikhajiagbe, B. and Ekpekurede, E.O. (2006). Effects of salinity on germination, growth and yield of five groundnut genotypes. Afr. J. Biotechnol., 5(20): 1973-1979.
Morrisey, D.J.; Swales, A.; Dittmann, S.; Morrison, M.A.; Lovelock, C.E. and Beard, C.M. (2010). The ecology and management of temperate mangroves. Oceanogr. Mar. Biol. Annu. Rev., 48: 43-160. https://doi.org/10.1201/EBK1439821169-c2.
Moslehi, M.; Pypker, T.; Bijani, A.; Ahmadi, A. and Hallaj, M.H.S. (2021). Effect of salinity on the vegetative characteristics, biomass and chemical content of red mangrove seedlings in the south of Iran. Sci. Forest., 49(132): e3748. https://doi.org/10.18671/scifor.v49n132.16.
Naidoo, G. (2006). Factors contributing to dwarfing in the mangrove Avicennia marina. Annals of Botany, 97(6), 1095-1101. DOI: 10.1093/aob/mcl064
Naidoo, G., and Naidoo, K. (2021). Salinity exacerbates oil contamination effects in mangroves. Environ. Sci. Pollut. Res., 28(48): 68398-68406. https://doi.org/10.1007/s11356-021-15450-9.
Nguyen, H.T.; Stanton, D.E.; Schmitz, N.; Farquhar, G.D. and Ball, M.C. (2015). Growth responses of the mangrove Avicennia marina to salinity: development and function of shoot hydraulic systems require saline conditions. Ann. Bot., 115(3): 397-407. https://doi.org/10.1093/aob/mcu257.
Parida, A.K. and Das, A.B. (2005). Salt tolerance and salinity effects on plants: a review. Ecotoxicol. Environ. Saf., 60(3): 324-349. https://doi.org/10.1016/j.ecoenv.2004.06.010.
Parida, A.K., and Jha, B. (2010). Salt tolerance mechanisms in mangroves: a review. Trees, 24(2): 199-217. https://doi.org/10.1007/s00468-010-0417-x.
Parida, A.K.; Das, A.B. and Mittra, B. (2003). Effects of NaCl stress on the structure, pigment complex composition, and photosynthetic activity of mangrove Bruguiera parviflora chloroplasts. Photosynthetica, 41 (2): 191-200. https://doi.org/10.1023/B:PHOT.0000011951.37231.69.
Petretto, G.L.; Urgeghe, P.P.; Massa, D. and Melito, S. (2019). Effect of salinity (NaCl) on plant growth, nutrient content, and glucosinolate hydrolysis products trends in rocket genotypes. Plant Physiol. Biochem., 141, 30-39. https://doi.org/10.1016/j.plaphy.2019.05.
Qados, A.M.A. (2011). Effect of salt stress on plant growth and metabolism of bean plant Vicia faba (L.). J. Saudi Soc. Agric. Sci., 10(1): 7-15. https://doi.org/10.1016/j.jssas.2010.06.002.
Reef, R. and Lovelock, C.E. (2015). Regulation of water balance in mangroves. Ann. Bot., 115(3): 385-395. https://doi.org/10.1093/aob/mcu174.
Reef, R.; Ball, M.C. and Lovelock, C.E. (2012). The impact of a locust plague on mangroves of the arid Western Australia coast. J. Trop. Ecol., 28(3): 307-311. https://doi.org/10.1017/S0266467412000041.
Scholander, P.F.; Hammel, H.T.; Hemmingsen, E. and Garey, W. (1962). Salt balance in mangroves. Plant Physiol., 37(6): 722. https://doi.org/10.1104/pp.37.6.722.
Stawarczyk, M. and Stawarczyk, K. (2015). Use of the ImageJ program to assess the damage of plants by snails. Chem.Didact. Ecol. Metrol., 20(1-2): 67-73. https://doi.org/10.1515/cdem-2015-0007.
Stuart, S.A.; Choat, B.; Martin, K.C.; Holbrook, N.M. and Ball, M.C. (2007). The role of freezing in setting the latitudinal limits of mangrove forests. New Phytol., 173(3): 576-583. https://doi.org/10.1111/j.1469-8137.2006.01938.x.
Suárez, N. and Sobrado, M.A. (2000). Adjustments in leaf water relations of mangrove (Avicennia germinans) seedlings grown in a salinity gradient. Tree Physiol., 20(4): 277-282. https://doi.org/10.1093/treephys/20.4.277.
Taylor, A.O. and Rowley, J. (1971). Plants under climatic stress: I. Low temperature, high light effects on photosynthesis. Plant Physiol., 47(5): 713-718. https://doi.org/10.1104/pp.47.5.713.
Tomlinson, B.P. (1986). The Botany of Mangroves. Camb., Engl.: Camb. Univ. Press. U.K. 413 pp.
Tuteja, N. (2005).Unwinding after high salinity stress. II. Development of salinity tolerant plant without affecting yield. Plant J. (India) , 24: 219-229.
Ye, Y.; Tam, N.F.Y.; Lu, C.Y. and Wong, Y.S. (2005). Effects of salinity on germination, seedling growth and physiology of three salt-secreting mangrove species. Aquat. Bot., 83(3): 193-205. https://doi.org/10.1016/j.aquabot.2005.06.006.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Iraqi Journal of Aquaculture

This work is licensed under a Creative Commons Attribution 4.0 International License.