Diagnostic study of the green alga Dunaliella salina in the brine ponds from Basrah Governorate and the effect of chloride salt on alga growth and carotene production.
DOI:
https://doi.org/10.58629/ijaq.v20i1.455Keywords:
brine ponds, green alga, Dunaliella salina, Morphological diagnosis, sodium chloride salt, total caroteneAbstract
The current study included shedding light on one genus of green alga Dunaliella salina spread from the saline brine ponds, Basrah Governorate, southern Iraq. Morphological results showed all algal samples from different brine ponds sites in Basrah governorate were belong to the species D. salina, and the measured enviro-nmental factors are commensurate with the growth of this species especially salinity, due to its increasing growth compatible increasing salinity with significantly P≤0.05 at concentrations 0-15% of sodium chloride salt, which equaled a salinity level more than 4 times the salinity of sea water, which amounted to 150 g/L. finding showed the concentration 5% of sodium chloride is considered it is a suitable concentration for the growth of all alga samples with no significant differences P≤0.05 between the generation time (G) and constant growth (K) for all cultures samples. Finding was proven that all isolates of the different sites showed the ability to produce total carotene in response to an increase or decrease in salinity, as is the case in the salinity-free control group as an effort that requires the alga to produce carotene, and this is an important characteristic for this species as well. From these results, it can be concluded that all isolates of algae from different sites belong to only one species diagnosed in the current study.Metrics
References
Abusara, N.F.; Emeish, S.; and Sallal, A.K. (2011). The effect of certain environmental factors on growth and β-carotene production by Dunaliella sp. isolated from the Dead Sea. Jordan J. Biol. Sci., 4(1): 29-36. URL.
Al-Mousawi, N.J. and Al-Asadi, W.M. (2013). Occurrence of Halotolerant algae in shallow salina water (bogs), Distributed in Basra City, Iraq. J. Thi-Qar Sci., 4(1): 9-17. URL.
AL-Sultan, E.Y. (1999). An Ecological and Physiological Study on a Halotolerant alga Dunaliella salina in Basrah. M. Sc. Thesis Coll. Educ., Univ. Basrah, 120 pp.
Alwan, A.A. (2016). Extraction and some bioactive compounds from halotolerant green alga Dunaliella sp. and study their biological application. M. Sc. Thesis, Coll. Sci., Univ. Basrah, 112 pp.
Ben-Amotz, A. and Avron, M. (1992). Dunaliella: Physiology, bioch-emistry, and biotechnology. CRC Press, Boca Raton, FL, USA. URL.
Ben-Amotz, A.; Polle, J.E.; and Subba-Rao, D.V. (2009). The Alga Dunaliella: Biodiversity, Physiology, Genomics and biotech-nology. CRC press,1St publisher Taylor and Francis Group.
Borowitzka, M.A. and Siva, C.J. (2007). The taxonomy of the genus Dunaliella (Chlorophyta, Dunaliellales) with emphasis on the marine and halophilic species. J. Appl. Phycol., 19(5): 567-590. DOI: 10.1007/s10811-007-9171-x
Brock, T.D. (1975). Salinity and the ecology of Dunaliella from Great Salt Lake. J. Gen. Microbiol., 89(2): 285-292. DOI: 10.1099-/00221287-89-2-285
Casadiego, D.A.C.; Arrieta, A.R.A.; Mercado E.R.A.; Cahuana, S.J.C.; Noriega, K.S.B.; Escobar, A.F.S. and Avendano, E.D.M. (2016). Evaluation of Culture Conditions to Obtain Fatty Acids from Salina Microalgae Species: Dunaliella salina, Sinecosyfis sp., and Chroomonas sp. BioMed Res. Inter.1-7. DOI: 10.1155/2016/508-1653
Chen, H. and Jiang, J.G.(2009). Osmotic responses of Dunaliella to the changes of salinity. J. Cell Physiol., 219(2): 251-258. DOI: 10.1002/jcp.21715.
Chu, S.P. (1942). The influence of the mineral composition of the medium on the growth of planktonic algae: part I. Methods and culture media. The J. Ecol., 284-325.
Fazeli, M.R.; Tofighi, H.; Samadi, N.; and Jamalifar, H. (2006). Effects of salinity on β-carotene production by Dunaliella tertiolecta DCCBC26 isolated from the Urmia salt lake, north of Iran. Biores. Technol., 97(18): 2453-2456. DOI: 10.-1016/j.biorte-ch.2005.10.037
Fogg, G.E.(1965). Algal cultures and phytoplankton. Ecology Univ. Wisconsin press. 51, 1: 1266. DOI: 10.1002/iroh.19660510-116
González, M.A.; Gómez, P.I. and Polle, J.E. (2019). Taxonomy and phylogeny of the genus Dunaliella. In The Alga Dunaliella (15-44). CRC Press. DOI: 10.1201/97804290616-39-2.
Hadi, M.R.; Shariati, M. and Afsharzadeh, S. (2008). Microalgal biotechnology: carotenoid and glycerol production by the green algae Dunaliella isolated from the Gave-Khooni salt marsh, Iran. Biotech. Bioproc. Engin., 13(5): 540-544.
Holmes, J.A. and Dutcher, S.K. (1989). Cellular asymmetry in Chlamydomonas reinhardtii. J. Cell. Sci., 94(2): 273-285. DOI: 10.1242/jcs.94.2.273.
Khalil, Z.I.; Asker, M.M.; El-Sayed, S. and Kobbia, I.A. (2010). Effect of pH on growth and biochemical responses of Dunaliella bardawil and Chlorella ellipsoidea. World J. Microbiol. Biotech., 26(7): 1225-1231. DOI: 10.1007/s11-274-009-0292-z
Klaus, W.; Ben-Amotz, A. and Avron, M. (1980). Effect of tempera-ture on glycerol retention in the halotolerant algae Dunaliella and Asteromonas. Plant Physiol., 66(6): 1196-1197. DOI: 10.1104/pp.66.6.1196
Mofeed, J. and Abdel-Aal, E.I. (2015). Effect of phenol on some antioxidant enzymes in the marine microalga Dunaliella salina. J. Environ. Sci., 44(1): 185-196. URL.
Murthy, K.C.; Vanitha, A.; Rajesha, J.; Swamy, M.M.; Sowmya, P.R. and Ravishankar, G.A. (2005). In vivo antioxidant activity of carotenoids from Dunaliella salina a green micro-alga. Life Sci., 76(12): 1381-1390. DOI: 10.1016/j.lfs.2004.1-0.015.
Pourkarimi, S.; Hallajisani, A.; Alizadehdakhel, A.; Nouralishahi, A. and Golzary, A. (2020). Factors affecting production of beta-carotene from Dunaliella salina microalgae. Biocat. Agric. Biotech., 29, 101771. DOI: 10.1016/j.bcab.2020.1017-71
Smith, M. (1950). Fresh water algae of the united states. McGraw Hill, New York Second edition. PP. 325. URL
Stein, J.R. (1975). Handbook of phytochemical methods. Camb. Univ. Press. Camb., 445 pp.
Sui, Y. and Vlaeminck, S.E. (2019). Effects of salinity, pH and growth phase on the protein productivity by Dunaliella salina. J. Chem. Technol. Biotechnol., 94(4): 1032-1040. DOI: 10.1002/jctb.5850
Tafreshi, A. and Shariati, M. (2009). Dunaliella biotechnology: methods and applications. J. Appl. Microbiol., 107(1): 14-35. URL
Taha, O.; Abo El-Kheir, W.; Hammouda, F. and Abd El-Hady, H. (2012). Production of β-Carotene and Glycerol from Dunaliella bardawil and D. salina Isolated from the Egyptian Wet-Lands Qarun and Bardawil. Int. Conf. Ecol., Environ. Biol. Sci., 369-373. URL
Vo, T. and Tran, D. (2014). Carotene and antioxidant capacity of Dunaliella salina strains. World J. Nutr. Health, 2(2): 21-23. DOI: 10.12691/jnh-2-2-2
Wang, N.; Qian, Z.; Luo, M.; Fan, S.; Zhang, X. and Zhang, L. (2018). Identification of salt stress responding genes using transcriptome analysis in green alga Chlamydomonas reinhardtii. Int. J. Mol. Sci., 19(11): 3359. DOI: 10.3390/ijm s19113359
Watsuji, T.O.; Naka, A.; Morita, Y. and Kurahashi, M. (2021). Effect of temperature and dissolved oxygen on gravity sedimen-tation of the unicellular alga Dunaliella salina. Ann. Microbiol., 71(1): 1-7. DOI: 10.1186/s13213-021-01636-6.
Wiedeman, V.E.; Walne, P.L. and Trainor, F.R. (1964). A new technique for obtaining axenic cultures of algae. Can. J. Bot., 42(7): 958-959. DOI: 10.1139/b64-085.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2023 Iraqi Journal of Aquaculture
This work is licensed under a Creative Commons Attribution 4.0 International License.